

### Course Profile - Department of Physics

| Course Number : PHYS 485                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Course Title : Photonics                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| Required / Elective : Elective                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Pre / Co-requisites : -                                                        |
| Catalog Description:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Textbook / Required Material :                                                 |
| Maxwell's equations and light propagation.<br>Interference, temporal and spatial coherence.<br>Diffraction and diffraction gratings.<br>Dielectric waveguides and optical fibers;<br>dispersion in optical fibers. Polarization,<br>interaction of light and matter. Light<br>propagation in crystals; birefringence, optical<br>activity. Electro-optic effects: Pockels and<br>Kerr effects with electro-optic devices based<br>on the Pockels and Kerr cells. Acousto-optic<br>modulators and magneto-optic effect.<br>Nonlinear optics and 2nd Harmonic<br>Generation. Semiconductor fundamentals.<br>Stimulated emission, gas lasers,<br>semiconductor lasers, and laser amplifiers.<br>Quantum wells, quantum dots, VCSELs, and<br>holography. Semiconductor photon detectors. | Richard S. Quimby. <i>Photonics and Lasers, an Introduction</i> , Wiley, 2006. |
| Course Structure / Schedule : (3+0+0) 3 / 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ECTS                                                                           |

# **Extended Description :**

Maxwell's equations, wave equation in free space and matter. Plane waves in matter, attenuation, and boundary conditions. Review of optics: Snell's law, reflection, refraction, diffraction, and interference. Planar waveguides: waveguide modes, mode velocities, mode patterns, and dispersion. Cylindrical waveguides: acceptance angle, numerical aperture, waveguide modes, mode patterns, single and multimode fibers. Losses in optical fibers: absorption, scattering, and bending losses. Optical fibers: mode coupling, cladding modes, step and graded index fibers. Dispersion in optical fibers: intermodal and intramodal dispersion. Fiber connections and diagnostics. Semiconductor physics: energy bands, valance band, conduction band, bandgap, emission and absorption processes, reduced zone scheme, direct and indirect gap materials, photodetectors, light emitters, radiative efficiency. Layered semiconductors: n-type, p-type semiconductors, p-n junctions, heterojunctions, metal-semiconductor junctions. Light sources: LED, laser diode. Optical detectors: thermal detectors, photon detectors. Photodiode detectors: biasing, output saturation, response time. Lasers and coherent light: laser operation, optical coherence. Optical communications: fiber optic communications systems, signal multiplexing, optical amplifiers.

| Design   | content |        | : | Students |        | design  |
|----------|---------|--------|---|----------|--------|---------|
| measurem | ient    | setups |   | for      | simple | optical |
| measurem | ients.  |        |   |          |        |         |

**Computer usage**: Students use computational and graphics software in the analysis and presentation of their data obtained in the laboratory work and in the research towards their term papers.

Course Learning Outcomes [relevant program outcomes in brackets]:

On successful completion of this course students will be able to

- 1. demonstrate a knowledge of the nature and propagation of light in vacuum and matter [1, 2];
- 2. devise waveguiding of light and fiber-optics [1, 6];
- 3. outline the basics of semiconductor physics [1, 6];
- 4. describe how light can be produced and its properties can be determined [6];
- 5. discuss the operating principles of lasers [7];
- 6. develop an insight into optical communication systems and their operating principles [7];
- 7. perform simple measurements in optics [6, 11];
- 8. show an increased competence to effectively communicate an accomplished project in both written and verbal form [9].

# **Recommended reading:**

Bahaa E. A. Saleh, Malvin Carl Teich, Fundamentals of Photonics, 2<sup>nd</sup> Edition, Wiley, 2007.

# **Teaching methods:**

Lectures of approximately 3 hours per week, pre-readings, homework problems, laboratory work, and a term paper.

# Assessment methods:

Two mid-term examinations, weekly homework assignments, quizzes, and a term paper.

# Student workload:

| Prepared by : İsmail Karakurt , 01.02.2010 | Revision Date :              |  |
|--------------------------------------------|------------------------------|--|
| TOTAL                                      | 125 hrs to match 25 x 5 ECTS |  |
| Examinations                               | 3 hrs                        |  |
| Laboratory work                            | 5 hrs                        |  |
| Independent work                           | 42 hrs                       |  |
| Homework                                   | 25 hrs                       |  |
| Lectures, discussions                      | 45 hrs                       |  |
| Pre-reading                                | 5 hrs                        |  |
|                                            |                              |  |